Age-dependent requirement of AKAP150-anchored PKA and GluR2-lacking AMPA receptors in LTP.
نویسندگان
چکیده
Association of PKA with the AMPA receptor GluR1 subunit via the A kinase anchor protein AKAP150 is crucial for GluR1 phosphorylation. Mutating the AKAP150 gene to specifically prevent PKA binding reduced PKA within postsynaptic densities (>70%). It abolished hippocampal LTP in 7-12 but not 4-week-old mice. Inhibitors of PKA and of GluR2-lacking AMPA receptors blocked single tetanus LTP in hippocampal slices of 8 but not 4-week-old WT mice. Inhibitors of GluR2-lacking AMPA receptors also prevented LTP in 2 but not 3-week-old mice. Other studies demonstrate that GluR1 homomeric AMPA receptors are the main GluR2-lacking AMPA receptors in adult hippocampus and require PKA for their functional postsynaptic expression during potentiation. AKAP150-anchored PKA might thus critically contribute to LTP in adult hippocampus in part by phosphorylating GluR1 to foster postsynaptic accumulation of homomeric GluR1 AMPA receptors during initial LTP in 8-week-old mice.
منابع مشابه
NMDA Receptor-Dependent LTD Requires Transient Synaptic Incorporation of Ca2+-Permeable AMPARs Mediated by AKAP150-Anchored PKA and Calcineurin
Information processing in the brain requires multiple forms of synaptic plasticity that converge on regulation of NMDA and AMPA-type glutamate receptors (NMDAR, AMPAR), including long-term potentiation (LTP) and long-term depression (LTD) and homeostatic scaling. In some cases, LTP and homeostatic plasticity regulate synaptic AMPAR subunit composition to increase the contribution of Ca(2+)-perm...
متن کاملAKAP150-anchored calcineurin regulates synaptic plasticity by limiting synaptic incorporation of Ca2+-permeable AMPA receptors.
AMPA receptors (AMPARs) are tetrameric ion channels assembled from GluA1-GluA4 subunits that mediate the majority of fast excitatory synaptic transmission in the brain. In the hippocampus, most synaptic AMPARs are composed of GluA1/2 or GluA2/3 with the GluA2 subunit preventing Ca(2+) influx. However, a small number of Ca(2+)-permeable GluA1 homomeric receptors reside in extrasynaptic locations...
متن کاملSynaptic Calcineurin Affects LTP and LTD
Homomeric AMPA receptors (AMPARs) composed solely of GluA1 subunits are permeable to Ca , whereas heteromeric receptors containing GluR2 are not. PhosphorylationofGluA1bycAMP-dependentprotein kinase (PKA) in hippocampal neurons stabilizes Ca -permeable AMPARs in extrasynaptic membranes, where they can move into synapses during long-term potentiation (LTP). Dephosphorylation of GluA1 by calcineu...
متن کاملLTP in the Hippocampal CA1 Region Does Not Require Insertion and Activation of GluR2-Lacking AMPA Receptors
Activity-dependent insertion of AMPA-type glutamate receptors is thought to underlie long-term potentiation (LTP) at Schaffer collateral fiber synapses on pyramidal cells in the hippocampal CA1 region. Although it is widely accepted that the AMPA receptors at these synapses contain GluR2 subunits, recent findings suggest that LTP in hippocampal slices obtained from 2 – 3 week old rodents is dep...
متن کاملLong-term potentiation in the hippocampal CA1 region does not require insertion and activation of GluR2-lacking AMPA receptors.
Activity-dependent insertion of AMPA-type glutamate receptors is thought to underlie long-term potentiation (LTP) at Schaffer collateral fiber synapses on pyramidal cells in the hippocampal CA1 region. Although it is widely accepted that the AMPA receptors at these synapses contain glutamate receptor type 2 (GluR2) subunits, recent findings suggest that LTP in hippocampal slices obtained from 2...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The EMBO journal
دوره 26 23 شماره
صفحات -
تاریخ انتشار 2007